Átomo: todas as substâncias são feitas de matéria e a unidade fundamental da matéria é o átomo. O átomo é composto de um núcleo central contendo prótons (com carga positiva) e nêutrons (sem carga). Os elétrons (com carga negativa e massa insignificante) circulam em torno do núcleo em diferentes trajetórias imaginárias, chamadas órbitas (em 1911, Rutherford propôs a estrutura atômica com um núcleo massivo, ou seja, carga positiva concentrada no centro do átomo raio do núcleo 10 mil vezes menor que o raio do átomo, mas contendo mais de 99,9 % da massa deste átomo).

Elemento: é uma substância feita de átomos de um tipo. Há cerca de 82 elementos que ocorrem naturalmente e cerca de 31 elementos que são criados artificialmente. como listados em diferentes Tabelas Periódicas - nestas tabelas cada elemento tem um símbolo químico, por exemplo: Ferro (Fe), Urânio (U), Hélio (He).

Isótopo: Um elemento pode ter mais de uma variante, denominada de isótopo. Exemplo: o carbono-12, carbono-13 e carbono-14 são três isótopos do elemento carbono com os números de massa 12, 13 e 14, respectivamente. O número atômico do carbono é 6 (= número de prótons no núcleo), o que significa que cada átomo de carbono tem 6 prótons, de modo que os números de nêutrons destes isótopos são 6. 7 e 8. respectivamente.

Na nomenclatura científica, os isótopos são designados pelo nome do elemento seguido por um hífen e pelo número de prótons e nêutrons no núcleo atómico (ex: ferro-57, urânio-238, hélio-3). Na forma simbólica, esse número é escrito como um prefixo subido do símbolo químico (ex: 57Fe, ²³⁸U, ³He).

Substância: é formada por uma ou mais moléculas. Uma molécula é formada quando átomos do mesmo ou de diferentes elementos se combinam. A molécula é a menor partícula de uma substância que pode normalmente existir de maneira independente. Exemplos:

- Dois átomos de oxigênio se combinam formando uma molécula de oxigênio [02].
- Um átomo de carbono se combina com dois átomos de oxigênio para formar uma molécula de dióxido de carbono [CO2].

Radiação alfa (ou partícula alfa, ou raio alfa): é uma partícula carregada por dois prótons e dois nêutrons, e por isso tem uma carga positiva +2 e **número de massa** 4. É produzida a partir de núcleos grandes, como os núcleos radioativos do urânio, tório e rádio, por exemplo. Quando um átomo emite uma partícula alfa, o número de massa do átomo diminui em quatro unidades, devido à perda dos prótons e nêutrons. Já o **número atómico** do átomo cai duas unidades, em razão da perda dos dois prótons - o átomo torna-se um novo elemento. Exemplo disso é o urânio que se torna tório, quando há perda de dois prótons. A radiação alfa é muito energética, mas é facilmente barrada por uma folha de papel.

Número de Massa: é a soma do número de prótons e nêutrons do núcleo de um átomo.

Número Atômico: é o número de prótons no núcleo de um átomo. Como átomos são eletricamente neutros, o número de prótons é igual ao número de elétrons. O número atômico do Urânio é 92 e o do Tório é 90

Peso Atômico (eu massa atômica relativa): é o número de vezes que um átomo de um elemento é mais pesado que um átomo de hidrogênio. O peso atômico do hidrogênio é tomado como sendo a unidade [1].

Os menores núcleos encontrados, capazes de emissão alfa, são os do elemento telúrio-52 (Te), com números de massa entre 106 e 127.

Radiação beta (ou partícula beta, ou raio beta): a emissão beta ocorre em elementos com mais nêutrons do que prótons no núcleo, em que, natural ou artificialmente, um nêutron se divide em um próton e um elétron. O próton permanece no núcleo e o elétron é emitido em alta velocidade (carga negativa). A radiação beta é mais penetrante e menos energética que a radiação alfa, conseguindo atravessar lâminas de chumbo de até 2 mm ou de alumínio de até 5 mm, mas é facilmente barrada por placa de madeira de 2,5 cm de espessura.

Radiação gama (ou raios gama): é uma radiação eletromagnética, de carga e massa nulas e de emissão contínua de calor, resultante de um núcleo de átomo em estado instável (excitado). A emissão de raios gama não altera o número de prótons e nêutrons do núcleo, mas tem o efeito de estabilizá-lo. A emissão de raios gama está associada, frequentemente, ao processo natural de radiações alfa e beta. A Radiação gama é extremamente penetrante, podendo atravessar chapas de aço de até 15 cm de espessura e atravessar o corpo humano, mas pode ser barrada por grossas placas de chumbo ou paredes de concreto.

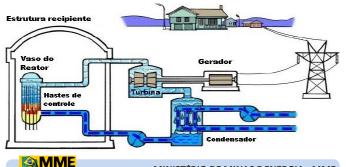
N3E Núcleo de Estudos Estratégicos de Energia / SPE/MME www.mme.gov.br / n3e.spe@mme.gov.br

(55 61) 2032 5967 / 2032 5226

Energia Nuclear: Brasil e Mundo

Edição: 17/12/2015

O que é radioatividade?

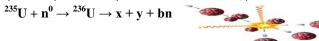

A radioatividade é um fenômeno natural ou artificial, pelo qual algumas substâncias ou elementos químicos, chamados radioativos, são capazes de emitir radiações, identificadas por partículas alfa, partículas **beta** e raios **gama** (raios-X), principalmente. A radioatividade é uma forma de energia nuclear, e consiste no fato de alguns átomos como os do urânio, rádio e tório, dentre outros elementos, serem "instáveis", emitindo constantemente radiações. O urânio, por exemplo, tem 92 *prótons*, porém através dos séculos vai perdendo-os na forma de radiações, até terminar em chumbo, com 82 prótons estáveis (fenômeno natural). A *fissão* nuclear para produção de energia elétrica é um fenômeno artificial.

A radioatividade foi observada pela primeira vez pelo francês Henri Becquerel em 1896 enquanto trabalhava em materiais fosforescentes.

Quais são as aplicações da energia nuclear?

As radiações dos *isótopos* radioativos têm a propriedade de produzir uma impressão em placas fotográficas, ionizar gases, produzir fluorescência, atravessar corpos opacos à luz, dentre outras, o que possibilita vários usos na medicina, na indústria - particularmente a farmacêutica- e na agricultura, por exemplo. As radiações podem atravessar a matéria ou serem absorvidas por ela, o que possibilita múltiplas aplicações - pela absorção da energia das radiações (em forma de calor) células ou pequenos organismos podem ser destruídos. Essa propriedade, que normalmente é altamente inconveniente para os seres vivos, pode ser usada em seu benefício, quando empregada para destruir células ou microorganismos nocivos. Por estas razões, a cada dia, novas técnicas nucleares são desenvolvidas nos diversos campos da atividade humana. possibilitando a execução de tarefas impossíveis de serem realizadas pelos meios convencionais.

A fissão é outra forma de aplicação da energia nuclear, para geração de energia elétrica, propulsão de submarinos e foguetes, armamento nuclear e pesquisas.



MINISTÉRIO DE MINAS E ENERGIA - MME SECRETARIA DE PLANEJAMENTO E DESENVOLVIMENTO ENERGÉTICO **NÚCLEO DE ESTUDOS ESTRATÉGICOS DE ENERGIA**

O que é fissão nuclear? ... E fusão?

Fissão nuclear é o processo em que se "bombardeia" o núcleo de um elemento radioativo, com um nêutron. Essa colisão resulta na criação de um isótopo do elemento, totalmente instável, que se quebra formando dois novos elementos e liberando grandes quantidades de energia e um nêutron livre.

O processo pode ser simplificado da forma abaixo, para o urânio-235:

Onde: \mathbf{n}^0 é o nêutron bombardeado, ²³⁵U é urânio instável, \mathbf{X} e \mathbf{y} são os dois novos elementos e \mathbf{bn} a liberação de um ou mais nêutrons.

A quantidade de energia liberada durante os processos de fissão nuclear pode ser multiplicada milhares de vezes se o resultado de uma fissão nuclear acionar outra fissão e assim sucessivamente em milhares de fissões. A esse fato chamamos de reação em cadeia. Controlando-se o número de nêutrons produzidos e a quantidade de ²³⁵U, pode-se controlar a taxa de fissão ao longo do tempo. Cabe salientar que a fissão do núcleo raramente ocorre de forma espontânea na natureza.

Fusão nuclear é o processo no qual dois ou mais núcleos atômicos se juntam e formam um outro núcleo de maior *número atômico*.

O que é um reator nuclear?

Reator nuclear é uma câmara de resfriamento hermética, blindada contra a radiação, onde é controlada uma reação nuclear para a obtenção de energia elétrica, produção de materiais fissionáveis como o plutônio para armamentos nucleares, propulsão de submarinos e satélites artificiais ou para pesquisas.

Uma central nuclear pode conter vários reatores. Atualmente apenas os reatores nucleares de fissão são empregados para a produção de energia elétrica comercial, porém os reatores nucleares de fusão estão em fase experimental.

Principais componentes de um reator nuclear de fissão:

- 1. **Combustível**: isótopo físsil e/ou fértil (aquele que pode ser convertido em físsil por ativação neutrônica): Urânio-235, Urânio-238, Plutônio-239, Tório-232, ou misturas destes (o combustível típico atualmente é o MOX, mistura de óxidos de urânio e plutônio).
- 2. **Moderador:** água leve, água pesada, hélio, grafite, sódio metálico que cumprem a função de reduzir a velocidade dos nêutrons produzidos na fissão, para que possam atingir outros átomos fissionáveis mantendo a reação.
- 3. **Refrigerador:** água leve, água pesada, dióxido de carbono, hélio, sódio metálico que conduzem o calor produzido durante o processo até a turbina geradora de eletricidade ou o propulsor.
- 4. **Refletor:** água leve, água pesada, grafite, urânio que reduzem o escapamento de nêutrons aumentando a eficiência do reator.
- 5. **Blindagem:** concreto, chumbo, aço, água leve que evitam o escapamento de radiação gama e nêutrons rápidos.
- 6. **Material de Controle:** cádmio ou boro, que finalizam a reação em cadeia, pois ambos são ótimos absorventes de nêutrons. Geralmente

E sobre a expansão?

Há 70 reatores em construção, sendo 83% do tipo PWR e 5% do tipo BWR. A China, com 26 reatores e 29,9 GW de potência, é o país em maior expansão (40% do total). Da tabela abaixo, até o final de nov/2015, 6,4 GW (China), e 1,0 GW (Coreia), já estavam em operação.

Reatores em construção (MW), ao final de 2014

País	MW	Nº Reatores		País	MW	Nº	
						Reatores	
CHINA	29.945		26	UCRANIA	2.000	2	
RUSSIA	7.966		9	FINLANDIA	1.720	1	
COREIA	6.600		5	FRANÇA	1.750	1	
ESTADOS UNIDOS	6.218		5	BRASIL	1.350	1	
INDIA	4.300		6	ESLOVAQUIA	942	2	
EMIRADOS ARABES	4.200		3	PAQUISTÃO	680	2	
JAPÃO	2.756		2	ARGENTINA	29	1	
TAIWAN	2.700		2				
BELARUS	2.388	I	2	TOTAL	75.544	70	

Segundo a IAEA, entidade fonte de dados deste boletim, estavam planejados para construção, ao final de 2014, mais 96 reatores, equivalentes a 88 GW de potência nominal.

A energia nuclear é competitiva em custos e é isenta de emissões nos processos de geração – considerando o uso de combustíveis na cadeia energética da mineração à geração, as emissões em tCO₂/GWh varíam de 10 a 50 na nuclear e de 450 a 1.200 nas fontes fósseis. Ainda assim, a cada acidente nuclear, seja por causa natural, falha técnica, ou falha humana, reacendem-se as incertezas sobre segurança, e reatores são desativados e/ou a expansão é repensada.

Há reservas suficientes de urânio?

O atual consumo mundial de urânio natural (U_3O_8), próximo de 70 mil t por ano, dá às reservas **medidas** vida útil acima de 80 anos (Brasil >500 anos). O indicador mundial passa de 200 anos se forem adicionadas as reservas **estimadas** e **inferidas**, de 10,5 milhões t.

Reservas medidas de urânio (mil t)

Países	r	nil t	%	Países		mil t		%
Austrália		1.673	28,7	China		171	I	2,9
Cazaquistão		652	11,2	Vietnã		141	1	2,4
Canadá		485	8,3	Uzbequistão	1	115	1	2,0
Rússia		480	8,3	Jordânia	1	112		1,9
Brasil		309	5,3	Ucrânia		105	I	1,8
África do Sul		296	5,1	Groenlândia		86		1,5
Namíbia		284	4,9	Outros		431		7,4
Níger		273	4,7					
Estados Unidos		207	3,6	Mundo		5.820		100

Caso o projeto abaixo (box) tenha sucesso, a energia nuclear poderá suprir a demanda mundial de eletricidade por milhares de anos, tendo nos oceanos a matéria-prima para a produção de hidrogênio.

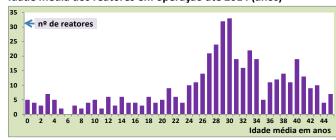
ITER - International Thermonuclear Experimental Reactor é um projeto de cooperação internacional, que sob o patrocínio da IAEA, envolve 35 países. Trata-se de um reator experimental em construção na França, que vai usar o hidrogênio em ambiente de dezenas de milhões °C, gerando calor para operar 500 MW de potência, através do processo de fusão nuclear – previsto para 2020.

Assim, em condições laboratoriais, espera-se a reprodução das reações de fusão nuclear que ocorrem no interior das estrelas, como o Sol, em um processo denominado nucleossíntese estelar, o que o faz ser uma das tecnologias do futuro para geração de energia elétrica renovável, limpa e barata, por liberar apenas hélio, um gás inerte e inofensivo.

Montagem do Folder (etapa 1- pg 1, 2, 7 e 8)

- a) Dobrar o primeiro 1/3 da folha até a linha à esquerda
- o) Ir para a folha seguinte

Até 2014 foram desativados 152 reatores nucleares, equivalentes a uma potência nominal de 62,3 GW. A Alemanha apresenta o maior volume de potência desativada, de 15,2 GW (24,3% do total).


Usinas Desativadas – em MW e nº de reatores (de 1970 a 2014)

País	Nº Reatores	MW	País	lº tores	MW
ESTADOS UNIDOS	33	14.686	ESLOVAQUIA	3	1.023
REINO UNIDO	29	4.805	ESPANHA	3 📗	1.116
ALEMANHA	27	15.157	SUÉCIA	3	1.242
FRANÇA	12	4.240	LITUÂNIA	2 📗	2.600
JAPÃO	12	6.670	ARMENIA	1	408
CANADA	6	2.268	BELGICA	1	12
RUSSIA	5	849	HOLANDA	1	60
BULGARIA	4	1.760	SUÍÇA	1	7
UCRANIA	4	3.800	KAZAQUISTÃO	1	90
ITÁLIA	4	1.472	TOTAL	152	62.265

Mesmo tendo havido conexão de novos reatores à rede, no período 1989/91 houve redução de 420 para 415 reatores, e de 1996/97 redução de 438 para 430 reatores. A última queda significativa, de 6 reatores, ocorreu de 2010 para 2011, em razão do acidente do Japão. Em 2005 e em 2010, ocorreu o máximo número de reatores em operação, de 441 unidades.

Dos reatores em operação, apenas 83 estão com idade média no intervalo 0-20 anos, outros 164 estão com idade média de 21 a 30 anos, e outros 191 com idade média de 31 a 45 anos, alguns destes últimos com ampliação da vida útil e/ou repotenciação.

Idade média dos reatores em operação até 2014 (anos)

O tempo médio de construção de reatores vem decrescendo no tempo, passando de uma média próxima de 100 meses, para algo entre 60 e 70 meses. Há reatores da China e Coreia, mais recentes, construídos em 50 meses. Tempo: do 1º grande volume de concreto, em geral na base do reator, até a ligação à rede básica de distribuição.

Tempo médio de construção de reatores (meses)

.cpocu	rempo medio de construção de reactico (meses)							
Período	Nº de Reatores Ligados à Rede	Meses						
1981 a 1985	131	84						
1986 a 1990	85	93						
1991 A 1995	29	82						
1996 A 2000	23	121						
2001 a 2005	20	59						
2006 a 2010	12	77						
2011 a 2013	14	66						
2014	5	70						

são usados na forma de barras (de aço borado, por exemplo) ou bem dissolvidos no refrigerador.

7. **Elementos de Segurança:** todas as centrais nucleares de fissão apresentam múltiplos sistemas de segurança ativos (que respondem a sinais elétricos) e passivos (que atuam de forma natural como a gravidade, por exemplo). A contenção de concreto que rodeia os reatores é o principal sistema de segurança, e destina-se a evitar que ocorra vazamento de radiação para o exterior.

O núcleo do reator é construído dentro de um forte recipiente de aço que contém varetas de combustível feitas de materiais físseis, metidos dentro de tubos. Essas varetas produzem calor no processo de fissão. Percorrendo o núcleo corre um refrigerante, líquido ou gasoso, que, ao ser aquecido pelo calor liberado, gera vapor de água que será canalizado para turbinas.

Quais são os tipos de reatores nucleares?

De acordo com a Agência Internacional de Energia Atômica – International Atomic Energy Agency (IAEA) -, os dois tipos de reatores a seguir especificados respondem por quase 90% da potência instalada de geração elétrica nuclear.

PWR - Pressure Water Reactor ou reator de água a pressão. Utiliza água pressurizada leve como refrigerante e moderador, e urânio enriquecido como combustível. O calor é transferido do refrigerante do reator primário, que é mantido líquido a alta pressão, para um circuito secundário em que há produção de vapor, que vai movimentar as turbinas e ser condensado e reciclado.

BWR - Boiling Water Reactor ou reator de água em ebulição. Utiliza água leve como refrigerante e moderador, e urânio enriquecido como combustível. Gera vapor diretamente através da fervura do refrigerante primário. O vapor de água é separado da água restante em separadores de vapor, posicionados acima do núcleo, e é passado para as turbinas, para em seguida ser condensado e reciclado.

Outros tipos de reatores utilizam diferentes "meios" de refrigeração, como água pesada, dióxido de carbono, ou sódio; ou utilizam outros "meios" de moderadores, como grafite ou água pesada. Alguns tipos não utilizam moderadores e podem utilizar urânio natural ou levemente enriquecido. São eles: GCR - Gas Cooled Reactor ou reator refrigerado por gás; PHWR - Pressurized Heavy-Water Reactor ou reator a água pesada; LWGR - Light Water Graphite Reactor, ou reator a água leve e grafite; FBR - Fast Breeder Reactoro combustível é uma mistura de óxidos de plutônio e urânio e nenhum moderador é usado.

E sobre a potência instalada mundial?

Ao final de 2014, havia 438 reatores nucleares em operação no mundo (434 em 2013), com potência nominal de 396,8 GW (6,7% da potência mundial de geração elétrica). Os 277 reatores do tipo PWR, respondiam por 68.4% da potência nuclear.

Capacidade Instalada por tipo de reator (MW) - 2014

Tipo	Número de Reatores	Potência MW	% Número	% Potência	MW / reator
PWR	277	271.394	63,2	68,4	980
BWR	80	79.533	18,3	20,0	994
GCR	15	8.491	3,4	2,1	566
PHWR	49	25.970	11,2	6,5	530
LWGR	15	10.785	3,4	2,7	719
FBR	2	612	0,5	0,2	306
Total	438	396.785	100,0	100,0	906

Capacidade Instalada por país (MW) e nº de reatores - 2014

				Expa	nsão	
810	D-f-	2024	Nº	MW/		Nº
Nº	País	MW	Reatores	Reator	MW	Reat.
1	Estados Unidos	103.908	99	1.050	-635	-1
2	França	65. <mark>880</mark>	58	1.136		
3	Japão	44.198	48	921		
4	Rússia	26.342	34	775	1.100	1
5	Coreia do Sul	21.678	23	943		
6	China	20.207	23	879	3.240	3
7	Canadá	14.385	19	757		
8	Ucrânia	13.835	15	922		
9	Alemanha	12.696	9	1.411		
10	Reino Unido	10.902	1 6	681		
11	Suécia	9.859	10	986		
12	Espanha	7.416	7	1.059		
13	Bélgica	6.212	7	887		
14	Índia	5.780	21	275		
15	Taiwan	5.214	6	869		
16	Rep. Tcheca	4.112	6	685		
17	Suíça	3.460	5	692		
18	Finlândia	2.860	4	715		
19	Bulgária	2.000	2	1.000		
20	Hungria	2.000	4	500		
21	Brasil	1.990	2	995		
22	Eslováguia	1.950	4	488		
23	África do Sul	1.940	2	970		
24	Argentina	1.750	3	583	745	1
25	Romênia	1.411	2	706		
26	México	1.400	2	700		
27	Irã	1.000	1	1.000		
28	Paquistão	750	3	250		
29	Eslovênia	727	1	727		
30	Holanda	515	1	515		
31	Armênia	408	1	408		
	Mundo	396.785	438	906	4.450	4

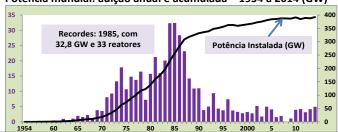
Os Estados Unidos detém a maior capacidade instalada de geração nuclear, de 103,9 GW, com proporção de 26,2% da mundial. Em seguida, vêm a França, com 65,9 GW (16,6% do mundo), e o Japão, com 44,2 GW (11,1%).

A França tem na geração nuclear 78% da sua geração total. Em seguida, vêm Eslováquia (57%), Hungria (54%) e Ucrânia (49%). O Japão não gerou em 2014, apesar da alta potência instalada.

Na geração mundial de energia elétrica, a proporção nuclear passou de 2% a 15,2%, de 1971 para 1985, evoluindo mais lentamente até 1996, quando atingiu a máxima participação, de 17,2%. A partir deste ano a proporção diminui seguidamente, chegando a 10,7% em 2014.

A soma do tempo em operação de cada reator dá aos Estados Unidos a maior experiência, com mais de 4.000 anos. A 2ª maior experiência fica com a França - perto de 2.000 anos.

Proporção da nuclear na geração total (%) e geração (TWh) - 2014


Nº	País	% sobre total	TWh	FC (%)	Anos Experiência
1	França	78	436	76	1,990
2	Eslováquia	57	16	91	152
3	Hungria	54	16	89	118
4	Ucrânia	49	88	73	443
5	Bélgica	46	34	62	268
6	Suécia	40	65	76	422
7	Eslovênia	37	6	95	33
8	Suíça	37	28	92	199
9	Rep. Tcheca	35	30	84	140
10	Finlândia	35	24	95	143
11	Bulgária	34	16	91	157
12	Armênia	31	2	64	40
13	Coreia do Sul	30	156	82	450
14	Espanha	21	57	88	308
15	Estados Unidos	20	839	92	4.012
16	Reino Unido	19	64	67	1.543
17	Taiwan	19	41	89	200
18	Romênia	18	12	94	25
19	Canadá	17	106	84	674
20	Rússia	17	181	78	1.157
21	Alemanha	16	97	87	808
22	África do Sul	6	16	95	60
23	Paquistão	6	5	75	61
24	Holanda	4	4	91	70
25	Argentina	4	6	36	73
26	México	3	10	79	45
27	Índia	3	35	69	418
28	Brasil	3	15	88	47
29	China	2	126	78	181
	Mundo	10,7	2.535	73	14.237

Nota: Não inclui anos de experiência do Japão (1.694 - geração=0), e da Itália (80), Kazaquistão (25) e lituânia (43), que se encontram com usinas desativadas. FC = fator de capacidade

O primeiro reator nuclear experimental surgiu em Idaho, Estados Unidos, em dezembro de 1951 e o primeiro em escala industrial entrou em operação na União Soviética em 1954. Em escala comercial, as usinas nucleares começaram a surgir alguns anos depois, na França, em 1959; nos Estados Unidos, em 1960; e na União Soviética, em 1964. Entre 1970 e 1990 houve a maior expansão e maior retração de reatores nucleares, tendo ocorrido o recorde em 1985, com um pouco mais de 32,8 GW instalados, correspondendo a 33 reatores.

Dentre os vários acidentes nucleares ocorridos, três são considerados de grande magnitude: o da **Three Mile Island** (*Pensilvânia*-USA), em 28/03/79, de nível 5 na Escala Internacional de Eventos Nucleares (**INES**), que vai de 0 a 7; o de *Chernobyl* (Ucrânia), em 26/04/86, de nível 7; e o de *Fukushima* (Japão), em 12/03/2011, de nível 5.

Potência mundial: adição anual e acumulada - 1954 a 2014 (GW)

Montagem do Folder (etapa 2 pg 3, 4, 5 e 6)

- a) Dobrar o primeiro 1/3 da folha até a linha à esquerda
- b) Encaixar esta folha dobrada no interior da primeira
- c) Grampear na dobra da encadernação
- d) Cortar nas linhas pontilhadas, para eliminar partes em branco

Instruções para imprimir o folder:

- a) Impressora colorida
- b) Nenhum para dimensionamento de pgs
- c) Imprimir nos dois lados
- d) Dobrar na borda horizontal
- e) Clicar em Sim para mensagem de mar