

DIPARTIMENTO DI INGEGNERIA MECCANICA, NUCLEARE E DELLA PRODUZIONE – GRNSPG (San Piero a Grado)

UNIVERSITA' DI PISA 56100 PISA - ITALY

PERSPECTIVES FROM IMPROVING NUCLEAR REACTOR SAFETY

F. D'Auria (University of Pisa),

H. Glaeser (retired, formerly at GRS), M. Kim (IAEA)

INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE

Oct. 4-9, 2015 – Rebouças Convention Center – Sao Paulo (BR)

LIST OF CONTENT

SUBJECT HEREAFTER IS NPP TECHNOLOGY BASED ON WATER COOLED REACTORS

FOREWORD 1 of 3

SUBJECT HEREAFTER IS NPP TECHNOLOGY BASED ON WATER COOLED REACTORS

'Possible' status of NPP Technology

- Does not match the expectations of the '50's
- **Declining** in a number of 'former' industrialized Countries (most of the EU)
- In 'stand-by' in key former nuclear Countries like France, US and noticeably Japan
- Development perspectives in three big Countries, China, Russia and India
- Questionable future (at least in terms of the "amount of the exploitation") in Countries like Argentina, Brasil, Canada, UK.
- Living expectations in Embarking Countries like Turkey, Vietnam, Bielorussia.

FOREWORD 2 of 3

SUBJECT HEREAFTER IS NPP TECHNOLOGY BASED ON WATER COOLED REACTORS

Motivations for declining NPP Technology:

- The Fukushima Technological Tragedy (and the TMI and Chernobyl events)
- The lack of certainty for Costs and Times (not last, the Finnish Plant)

	Value (US \$)
Installation	2 - 5 B
Lifetime Production	< 60 B
Potential Env Damage	T

• The availability and the competition of Other Energy sources

FOREWORD 3 of 3

SUBJECT HEREAFTER IS NPP TECHNOLOGY BASED ON WATER COOLED REACTORS

Entering the present vision:

- … (I like to state) Nuclear Energy = Political Energy. Nuclear scientists have little role in promoting the technology. Rather, they may identify and remove weaknesses.
- Contrary to TMI-2 and Chernobyl-4, where operator failures were decisive, in the case of Fukushima1-4 a chain of human failures (some understandable) contributed to the tragedy.
- Additional (fifth) safety barrier constituted by Emergency Rescue Team seems unavoidable to prevent T-\$ damages.

... an ambitious vision ...

FOREWORD 3-bis

THE EMERGENCY RESCUE TEAM

Necessary, complementary to what follows:

In case of Sabotage, Terroristic Act, Severe Environment Conditions, or Unit Not-Under-Control,

to constitute a national (or regional) Emergency Rescue Team (ERT) capable of physically intervening in a failed NPP Unit having own devices and access locations in each unit: this might be seen as a new (active) barrier part of the defense-in-depth and summing up with the current (mostly passive) standard barriers.

... ERT would have helped in the case of TMI-2, Chernobyl-4 and Fukushima-1-4

... the ambitious vision follows ...

BACKGROUND

NON-TECHNOLOGICAL, UN-NECESSARY BASES FOR THE PRESENT VISION

To re-gain the public trust toward NPP Technology:

- Not any of the existing NPP may withstand the fall of a (powerful) meteorite
- The probability can be estimated of a (powerful) meteorite hitting a NPP
- A nuclear disaster shall have the same probability of the 'hitting' meteorite
- The population shall accept the 'meteorite' risk & be aware of the connection <'meteorite' risk> vs <benefits of the NPP>

THE (NEW) VISION

A NECESSARY, NOT SUFFICIENT EFFORT, TO RE-GAIN THE PUBLIC TRUST TOWARDS NRST

Objective for the vision (= THE TARGET):

TOTAL NPP RISK ≤ METEORITE RISK

How to guarantee THE TARGET.

→ back to the origins of NRST, i.e. the principles

ALARA (As Low as Reasonably Achievable)
 ISD (Independence of Safety Demonstration)

THE (NEW) VISION

A NECESSARY, NOT SUFFICIENT EFFORT, TO RE-GAIN THE PUBLIC TRUST TOWARDS NRST

→INDEPENDENT SAFETY ANALYSES (& POSSIBLE NEW HARDWARE)

- Considering ALARA ←→ the best available assessment techniques (= BEPU)
- Identifying (all) FSAR 'analytical parts' and adopting the BEPU-equivalent approach
- Performing analyses independent of the designer/owner of facility

NEW HARDWARE & CONTROL

RELOW

SM-DC: Safety Margins - Detection & Control.

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 1 THE LIST OF CONTENT

1) (FOCUSED) SYNTHESIS OF NRST

- The View
- The Licensing Connection
- The Accident Analysis
- The FSAR Topics (a Snap-shot)
- The Time-Frame Landmarks
- Strengths & Weaknesses of FSAR

2) THE I-FSAR PROPOSAL

- The BEPU Motivations & Features
- The BEPU-based I-FSAR
- The Institution to manage the I-FSAR (Appendix)

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 1 >>>> THE (CURRENT) VIEW <<<<

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 1 >>>> THE LICENSING CONNECTION <<<<

LICENSING ... THE LEGAL SIDE OF NRST

A CONSISTENT REGULATORY FRAMEWORK

NRC Regulations (10 CFR)

June 2007

U.S. NUCLEAR REGULATORY COMMISSION

REGULATORY GUIDE

REGULATORY GUIDE 1.206 (Draft was issued as DG-1145, dated September 2006)

COMBINED LICENSE APPLICATIONS FOR NUCLEAR POWER PLANTS (LWR EDITION)

Standard Review Plan

for the Review of Safety Analysis Reports for Nuclear Power Plants

LWR Edition

NUREG-0800 (formerly issued as NUREG-75/087)

12/62

U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation June 1987

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 1 >>>> THE ACCIDENT ANALYSIS <<<<

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 1 >>>> THE ACCIDENT ANALYSIS <<<<

AA and FSAR: FSAR built around Chapter 15 – all chapters consistent with Chapter 15

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 1
>>>> THE FSAR TOPICS <<<<

ALPHABETICAL LIST OF SUBJECTS OF COMPETENCE (... > 100 ...)

Civil Engineering Climatology (including siting needs) Control Rod mechanisms Corrosion Component (nuclear) qualification and ... Computational tools... Atmospheric diffusion

Computational Fluid Dynamics (CFD)

Containment

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 1 >>>> THE TIME FRAME LANDMARKS <<<<

The Thermal Capacity of Graphite.

Heat Transfer & Pressure Drops.

TH Fundamentals; TPCF; Blow-down; CHF/DNB.

LBLOCA – '<u>Conservatism</u>'; TPCF; CHF/DNB; Code Design.

SBLOCA – BE / '<u>Realism</u>'; Scaling; 2D/3D; CCFL; NC; Code V & V.

AM; CFD; Uncertainty; Code V & V; Code Application.

Licensing: <u>BEPU</u> (Code Application & Scaling); Passive SYS TH.

BEPU Integration with: 3D NK, Structural Mechanics, CFD.

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 1
>>>> STRENGTHS & WEAKNESSES OF FSAR <<<<

FSAR

_

THE COMPENDIUM OF NRST FOR INDIVIDUAL NPP

STRENGTHS

Structure & List of Content Requirements & Acceptance Criteria

WEAKNESSES Cross-connections among Subjects Vendor/Owner produced

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 1 >>>> BEPU & VALIDATION <<<<

19/62

ø

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 1 >>>> BEPU & SCALING ISSUE <<<<

20/62

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 1 >>>> BEPU & NON-TH CODES <<<<

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 1 >>>> BEPU MOTIVATIONS & FEATURES <<<<

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 1 >>>> BEPU MOTIVATIONS & FEATURES <<<<

23/62

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 1 >>>> BEPU and I & C MODELING <<<<

Computational Tools & Qualification I & C

... REACTOR POWER DEVIATION

•The Power Deviation for the control system is produced by a PD controller and it is used to select speed and movement direction for the bank movement.

•The bank that must be moved is selected in a different logic (showed in the following)

BANK POSITION DEVIATION

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 1 >>>> BEPU and I & C MODELING <<<<

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 1 >>>> INTEGRATION DSA-PSA <<<<

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 1
>>>> ANOTHER VISION FOR BEPU <<<<

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 1
>>>> ANOTHER VISION FOR BEPU <<<<

... BEYOND (current) BEPU

TO APPLY THE [TH] BEPU TECHNOLOGY (V & V – SCALING – UNCERTAINTY – CODE COUPLING – PSA ...) TO ANY ANALYSIS NEEDED FOR NPP SAFETY

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 1 >>> SUMMING-UP BEPU BASED I-FSAR <<<<

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 1
>>>> INNOVATION OF BEPU BASED I-FSAR <<<<

The **first key innovation** is that the Safety analysis shall be carried out by **experts independent** of the Owner, of the Vendor or the Designer for the concerned NPP.

The **second key innovation** is that the latest qualified analysis techniques shall be adopted as well as the latest qualified findings from technology research. This includes the **BEPU & DSA-PSA integration**.

The **third key innovation** is the objective of homogeneity in the NRST matters: analyses including calculation processes shall not be limited to the accident analysis, but encompass any **FSAR (analysis based) topic**.

The fourth key innovation, see Part 2, consists in creating a connection (systems and/or controls) between safety analysis and the hardware of the NPP.

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 2 THE TARGET & MOTIVATION

TO STRENGHTEN THE CONNECTION

FSAR / SAFETY ANALYSIS

NPP HARDWARE / OPERATION

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 2 THE LIST OF CONTENT

1) THE DEFINITION OF SM

- The Standard Definition
- The Extended Definition
- The Connection with I-FSAR

2) IMPLEMENTATION & WORKING MODALITIES

- The SM Matrix
- The Application of Extended SM Concept

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 2 >>>> THE STANDARD DEFINITION OF SM <<<<

THE ORIGINAL

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 2 >>>> THE STANDARD DEFINITION OF SM <<<<

THE CONSIDERATION OF THE STOCHASTIC NATURE OF THE PROCESSES ...

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 2 >>>> FROM STANDARD TO EXTENDED DEFINITION OF SM <<<<

THE STARTING POINT

THE VIR'

SPACE

- 1 (one) Safety Objective
- 10 (ten) Safety Principles
- 5 (five) levels of Defense in Depth
- 6 (six) 'generalized' Safety Barriers
- 19 (nineteen) Safety Functions
- ~ 20 (about-twenty) standard-accepted definitions for SM
- > 100 (more-than-one-hundred) concepts-statements connected with SM
- Safety Analysis and connected DSA and PSA.

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 2 >>>> FROM STANDARD TO EXTENDED DEFINITION OF SM <<<<

IAEA ACTIVITY in progress:

... the words Safety Margins are used in combination with the words Design Margins.

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 2 >>>> FROM STANDARD TO EXTENDED DEFINITION OF SM <<<<

> NRST : THE KEY ELEMENTS THE 'A' LIST – 6 topics –

A1) Safety Principles, i.e. SP-1 to SP-10;

A2) DID Levels, i.e. DL-1 to DL-5;

A3) Safety Barriers, i.e. SB-1 to SB-6;

A4) Safety Functions, i.e.SF-1 to SF-19;

A5) PSA Elements, i.e. PE-1 to PE-n;

A6) DSA Elements, i.e. DE-1 to DE-m.

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 2 >>>> FROM STANDARD TO EXTENDED DEFINITION OF SM <<<<

> NRST THE TECHNOLOGICAL SECTORS THE 'B' LIST – 5 topics –

B1) Radio-Protection

B2) Thermal-Hydraulics

B3) Structural Mechanics

B4) Neutron Physics

B5) Civil & Electrical Engineering

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 2 >>>> FROM STANDARD TO EXTENDED DEFINITION OF SM <<<<

NRST: THE SSC – SYSTEMS, STRUCTURES COMPONENTS THE 'C' LIST – 19 topics –

C1) Reactor Pressure Vessel (RPV);

- C2) Reactor Coolant System (RCS) piping;
- C3) Balance of Plant (BOP) piping;
- C4) Core fuel;

SSC systems-

- C5) Core mechanical components;
- C6) RPV components except core;
- C7) RCS components;
- C8) BOP components;
- C9) Containment;
- C10) Containment components;

- C11) Core components;
- C12) Reactor building;
- C13) Auxiliary buildings;
- C14) Reactor building and auxiliary building components;
- C15) Site (parameters);
- C16) Site structures and components;
- C17) Off-site (NPP related relevant parameters);
- C18) Off-site structures and components (NPP related);
- C19) I & C.

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 2 >>>> FROM STANDARD TO EXTENDED DEFINITION OF SM <<<<

D1) Site selection;

D2) NPP design;

D3) NPP construction;

D4) NPP licensing;

D5) NPP operation;

D6) NPP maintenance;

D7) NPP decommissioning.

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 2 >>>> THE MULTI-D SM MATRIX <<<<

The NRST Space, multi-face and multi-field

multi-dimensional SM Matrix

 $\leftarrow \rightarrow$

D _i & corresponding_ID										
	The ID of B _i									
No	Safety Margin / Design Margin	Bi	С	A1	A2	A3	A4	A5	A 6	
1	Xxxx xxxx xxxx xxxx	1 to n	1-n to 19-m	SP-1 to SP-10	DL-1 to DL-5	SB-1 to SB-6	SF-1 to SF-19	PE-1 to PE-n	DE-1 to DE-m	
2										
Ν										

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 2 >>>> THE MULTI-D SM MATRIX <<<<

	B1)	B2)	B3)	B4)	B5)
	Radio-	Thermal-	Structural	Neutron	Civil & Electrical
	Protection	Hydraulics	Mechanics	Physics	Engineering
D1) Site selection	1	2	3	4	5
D2) NPP design	6	7	8	9	10
D3) NPP construction	11	12	13	14	15
D4) NPP licensing	16	17	18	19	20
D5) NPP operation	21	22	23	24	25
D6) NPP maintenance	26	27	28	29	30
D7) NPP decommissioning	31	32	33	34	35

... ending-up (current version) with

- 35 SM definition tables
- A few-thousands SM definitions

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 2
>>>> THE IMPLEMENTATION OF THE IDEA <<<<

A FEW THOUSANDS SM DEFINITIONS (ALSO FROM ALL AREAS OF THE BEPU BASED I-FSAR)

TRANSDUCERS DESIGNED-INSTALLED PER EACH SM

RANGE OF EACH SIGNAL

NEEDS DEFINITION-OF-ACCEPTANCE

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 2 >>>> THE APPLICATION OF THE SM-DC <<<<

44/62

THE CURRENT SAFETY APPROACH & THE PROPOSAL – PART 2 >>>> INNOVATION OF SM-DC <<<<

The **first key innovation** is the homogeneous consideration of the **risk space**. (the acceptable SM for an airplane approaching the site added to a mistake of an employer...) including the combination of signals independent upon each other.

The **second key innovation** is the design of hardware corresponding to <u>risk indicators</u> derived from safety analysis. This, see Part 1, implies creating a connection between <u>safety analysis and the hardware</u> of the NPP.

SUMMARY – 1 OF 2

DUTY OF NUCLEAR SCIENTISTS AND TECHNOLOGISTS (RATHER THAN PROMOTING THE NUCLEAR ENERGY DEPLOYMENT) SHALL BE THE TECHNOLOGY IMPROVEMENT

IN THE CASE OF NRST

• The Emergency Rescue Team (ERT) as an additional safety barrier (not discussed within the present vision)

and

• The BEPU-based Independent FSAR (I-FSAR)

coupled with

46/62

• The Safety Margins Detection & Control

MAY CONSTITUTE IMPROVEMENTS TO RE-ESTABLISH THE PUBLIC TRUST TOWARD THE NUCLEAR ENERGY

SUMMARY – 2 OF 2

COST CONNECTION

* All together.

CONCLUSIONS

SUBJECT HEREAFTER IS NPP TECHNOLOGY BASED ON WATER COOLED REACTORS

FOREWORD BACKGROUND THE (NEW) VISION • The Independent FSAR (I-FSAR)

- ✓ The BEPU
- Safety Margins Detection & Control PART 2

...NO CONCLUSION (Content: Obvious, Un-necessary, and Ambitious or Established).

However, APPENDIX 1 (below): Addressing Part 1 of the (New) Vision, the I-FSAR 48/62

(obvious) (un-necessary) (ambitious)

(established)

PART 1

APPENDIX 1

SUBJECT HEREAFTER IS NPP TECHNOLOGY BASED ON WATER COOLED REACTORS

Addressing Part 1 of the (New) Vision, the I-FSAR

COCONUT COnsortium of COmpetence in NUclear Technology

THE INSTITUTION TO MANAGE THE

(NPP VENDOR/OWNER) INDEPENDENT FSAR

COnsortium of COmpetence in NUclear Technology

THE FIELD OF COMPETENCE

THE TECHNOLOGY OF NUCLEAR SAFETY ANALYSIS

COnsortium of COmpetence in NUclear Technology

THE TARGET

TO ISSUE THE I-FSAR

BEPU-BASED INNOVATIVE SAFETY ANALYSIS TECHNOLOGY

COnsortium of COmpetence in NUclear Technology

THE MOTIVATIONS - 1 OF 2 (OTHER THAN I-FSAR)

NRST FULLY CONNECTED WITH COMPUTER SCIENCE. 1980 – 2010 IS THE DEVELOPMENT TIME FRAME.

SCIENTISTS / TECHNOLOGISTS SINCE 1980 COULD FOLLOW (CONTRIBUTE TO)THE DEVELOPMENT OF THE NRST AND HAVE «UNREPEATABLE» EXPERTISE.

THOSE SCIENTISTS CONSTITUTE THE OUTER LAYER OF COCONUT (see below).

COnsortium of COmpetence in NUclear Technology

THE MOTIVATIONS - 2 OF 2 (OTHER THAN I-FSAR)

THE COMPETENCE SPECTRUM IN NRST INCLUDES MORE THAN 100 SUBJECTS

TOP LEVEL EXPERTISE EXPECTED PER EACH SUBJECT:

- SHORT & UNIQUE LICENSING TIME-FRAME (2-5 YEARS)
- NOT AFFORDABLE BY ANY COMPANY

COnsortium of COmpetence in NUclear Technology

THE MACRO-STRUCTURE

COnsortium of COmpetence in NUclear Technology

THE STRUCTURE - 1 OF 2

THE INSTITUTIONS - 3RD LAYER

SENIOR/JUNIOR EXPERTS - 2ND LAYER

THE HEADQUARTERS

COnsortium of COmpetence in NUclear Technology

THE STRUCTURE - 2 OF 2

THE SELECTED INSTITUTIONS (3 SO FAR) HAVING DECADES OF ENGAGEMENT IN NRST:

- PROVIDE POOL OF EXPERTISE & INFRASTRUCTURES
- DO NOT PREVENT MANAGEMENT FLEXIBILITY
- THE COMBINATION OF SENIOR-JUNIOR EXPERTS:
- TO PROVIDE SUSTAINABILITY

DIFFERENT LEGAL AND OPERATING HEADQUARTERS SEPARATION OF MANAGEMENT-FINANCING-TECHNOLOGY

COnsortium of COmpetence in NUclear Technology

THE KEY CHALLENGES

- 1) PROPRIETARY DATA ←→ SECURITY OF INFORMATION
- 2) COMPETENCE AVAILABILITY & MANAGEMENT
- 3) DATA MANAGEMENT

COnsortium of COmpetence in NUclear Technology The Challenges – 1 of 3

PROPRIETARY DATA & SECURITY OF INFORMATION

LABYRINTH OF INFORMATION

Full image not reproducible

dreamstime

58/62

COnsortium of COmpetence in NUclear Technology The Challenges – 1 of 3

COCONUT: (Rough) Working Mode for security of information

NOMENCLATURE

central = expertise & management (one dozen involved)

peripheral = expertise (one dozen involved)

external = competence (one hundred involved)

dotted lines = (time) period working group

fullline = envelope of working modes

COnsortium of COmpetence in NUclear Technology The Challenges – 2 of 3

AVAILABILITY & MANAGEMENT OF COMPETENCE

COnsortium of COmpetence in NUclear Technology The Challenges – 3 of 3

DATA MANAGEMENT

DESIGN-CONSTRUCTION-OPERATION OF NUTEMA

INSPIRED BY IAEA:

INSAG-19 – Design Authority (Concept) INSAG-25 – IRIDM (Integrated Risk Informed Decision Making)

COnsortium of COmpetence in NUclear Technology

62/62